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Abstract

This is a survey of our results on the relation between perturbative renormalization and motivic
Galois theory. The main result is that all quantum field theories share a common universal symmetry
realized as a motivic Galois group, whose action is dictated by the divergences and generalizes that
of the renormalization group. The existence of such a group was conjectured by P. Cartier based
on number theoretic evidence and on the Connes-Kreimer theory of perturbative renormalization.
The group provides a universal formula for counterterms and is obtained via a Riemann-Hilbert
correspondence classifying equivalence classes of flat equisingular bundles, where the equisingularity
condition corresponds to the independence of the counterterms on the mass scale.
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1. Renormalization: particle physics and Hopf algebras

The main idea of renormalization is to correct the original Lagrangian of a quantum field
theory by an infinite series of counterterms, labelled by the Feynman graphs that encode
the combinatorics of the perturbative expansion of the theory. These counterterms have
the effect of cancelling the ultraviolet divergences. Thus, in the procedure of perturbative
renormalization, one introduces a countertermC(Γ ) in the initial Lagrangian for every
divergent one particle irreducible (1PI) Feynman diagramΓ . In the case of arenormalizable
theory, all the necessary countertermsC(Γ ) can be obtained by modifying the numerical
parameters that appear in the original Lagrangian. It is possible to modify these parameters
and replace them by (divergent) series, since they are not observable, unlike actual physical
quantities that have to be finite. One of the fundamental difficulties with any renormalization
procedure is a systematic treatment of nested and overlapping divergences in multiloop
diagrams (see e.g.[6]).

1.1. Dimensional regularization and minimal subtraction

One of the most effective renormalization techniques in quantum field theory is dimen-
sional regularization (DimReg). It is widely used in perturbative calculations. It is based
on an analytic continuation of Feynman diagrams to complex dimensiond ∈ C, in a neigh-
borhood of the integral dimensionD at which UV divergences occur. For the complex
dimensiond → D, the analytically continued integrals become singular and the expression
admits a Laurent series expansion. Thus, within the framework of dimensional regulariza-
tion, one can implement a renormalization by minimal subtraction, where the singular part
of the Laurent series inz = d −D is subtracted at each order in the loop expansion. This
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renormalization method (DimReg plus minimal subtraction) was developed by ’t Hooft
and Veltman[36], who applied it to one-loop calculations in scalar electrodynamics, dis-
cussed the problem of overlapping divergences, the Ward identities, the case of theories
with fermions, and anomalies. The method has since been applied widely to perturbative
calculations and it quickly became the standard regularization and renormalization method
for nonabelian gauge theories and the standard model.

1.2. Hopf algebras and the combinatorics of renormalization

The modern viewpoint on combinatorics, which unfolded in the 1970s around the sys-
tematic and rigorous restructuring of its foundations advocated by Giancarlo Rota, showed
how algebraic structures such as coalgebras, bialgebras, and Hopf algebras govern elabo-
rate combinatorial phenomena (cf.[37,55,57]). The reason why such algebraic structures
are naturally present lies in the fact that combinatorial objects tend to admit decomposi-
tion laws that reduce them to simpler pieces. Such laws are the source of coproduct rules.
This principle was illustrated by many examples of incidence Hopf algebras arising from
classes of graphs and matroids. The typical situation is families of finite graphs, closed
under disjoint union and taking vertex induced subgraphs. These admit a coproduct of
the form:

∆(Γ ) =
∑
W⊆V

γW ⊗ γV−W, (1.1)

whereV is the set of vertices ofΓ andγW is the induced subgraph on a set of vertices
W ⊆ V . Results from Hopf algebras in combinatorics were used, for instance, to study
graph coloring problems.

During 1960s and 1970s Quantum Field Theory underwent a season of extraordinary the-
oretical development. The detailed knowledge theoretical physicists gained on the subject
not only made it into something of an art, but refined it into a highly sophisticated in-
strument, capable of producing theoretical predictions that, to this day, match experiments
with unprecedented precision. Renormalization plays a central role in the quantum theory
of fields, in as it provides a consistent scheme for extracting from divergent expressions
finite values that can be matched to physically observed quantities. Various renormalization
schemes can be implemented (though here we will be concerned only with the “dimen-
sional regularization and minimal subtraction” scheme described above). A renormalization
scheme produces an extremely elaborate combinatorial recipe that accounts for structuring
of subgraphs in a hierarchy of subdivergences and counterterms. Perturbative renormaliza-
tion hence appears as one of the most elaborate combinatorial recipes imposed on us by
nature.

Conceptually, the crucial issue in the combinatorics of perturbative renormalization is
a scheme that accounts for subdivergences. This is achieved by aforest formula, which
assigns to a graphΓ a formal expression where the subdivergences have been dealt with
through inductively defined counterterms. Subtraction of the corresponding counterterm
from this formal expression finally yields the renormalized value forΓ . The definition of
such formal expressions, as we discuss more in detail below, is related to decomposing a
graph by extracting all possible divergent subgraphsγ ⊂ Γ and considering corresponding
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graphsΓ/γ obtained by collapsingγ ⊂ Γ to a single vertex. Such decomposition is more
complicated than those derived from incidence relations on graphs in many combinatorial
problems, as it is adapted to the specific divergences of the physical theory and has to
take into account other data like the distribution of external momenta. Still, one can see a
suggestive analogy between the type of decomposition expressed by coproducts(1.1)and
the decomposition:

∆(Γ ) =
∑
γ⊆Γ

γ ⊗ Γ/γ, (1.2)

in a sum over divergent subgraphs, which underlies the combinatorics of the forest formu-
lae. It was the seminal work of Kreimer[44] in 1997 that paved the way to a conceptual
mathematical formulation of perturbative renormalization, precisely by encoding the com-
plicated combinatorics of forest formulae via a coproduct(1.2) and identifying the Hopf
algebra that governed the renormalization procedure.

The extraction of a renormalized value from divergent Feynman integrals was related
in [43] and[15] to the antipode in the Hopf algebra. However, the precise formula for the
renormalized value given by the BPHZ procedure ([5,34,62]) requires a further operation
that twists the antipode, which, in this formulation, is not given directly in terms of the
Hopf algebra structure. The main conceptual breakthrough in the understanding of the
renormalization procedure, that fully reconciles it with the Hopf algebra structure, was then
obtained in a later stage of development of the Connes–Kreimer theory of perturbative
renormalization,[16,17], where the BPHZ recursive formulae (see(1.3)–(1.5)below) are
described in terms of the Birkhoff factorization of loops. We shall return to this point in
Section2.

Given the state of affairs in combinatorics and in quantum field theory around the late
1970s, it may seem surprising that the pursuit of a conceptual mathematical interpreta-
tion of the procedure of perturbative renormalization had to wait, as it did, until the late
1990s. One should keep in mind though that, during the 1970s, mathematicians and physi-
cists were maximally apart. The tendency among physicists was to shift the emphasis
heavily towards deriving efficient computational recipes at the expense of conceptual un-
derstanding, the latter being often dismissed as a mere exercise of pedantry. This position,
though justifiable in developing a theoretical apparatus that could be continuously tested
against experiments, had the effect of alienating mathematicians. While quantum mechan-
ics stimulated and in turn benefited from a lot of advancements in modern mathematics
(operator algebras, functional analysis), mathematicians shied away from quantum field
theory, which they perceived as ill founded, riddled with inevitable divergences, and gov-
erned by obscure hands-on recipes. In more recent times, mathematicians and theoretical
physicists found a renewed harmony of language, but this happened mostly in the context
of string theory. This, however, bypasses many of the crucial problems posed by quantum
field theory, by proposing a large restructuring of the foundations of high energy physics,
which at present still awaits experimental confirmation. Thus, in particular, the new de-
velopments left pretty much untouched the problem of a conceptual understanding of the
foundations of quantum field theory. Of course, there were at various times attempts to
axiomatize quantum field theory in a way that would be palatable for mathematicians (al-
gebraic and constructive quantum field theory, for instance). Such attempts unfortunately
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fell short of incorporating the full complexity of quantum field theory, especially with
respect to the issue of perturbative renormalization. On the other hand, at present per-
turbative quantum field theory still remains the most accurate instrument for theoretical
predictions in elementary particle physics and this impressive agreement between the-
ory and nature calls for the best possible conceptual understanding of its foundational
principles.

1.3. Bogoliubov–Parasiuk preparation

The Bogoliubov–Parasiuk preparation, or BPHZ method (for Bogoliubov–Parasiuk[5],
Hepp[34] and Zimmermann[62]) accounts for the presence of subdivergences, simultane-
ously taking care of the problem of the appearance of non-local terms and the organization
of subdivergences via an inductive procedure.

The BP preparation of a graphΓ , whose divergent integral we denote byU(Γ ), is given
by the formal expression:

R̄(Γ ) = U(Γ )+
∑
γ⊂Γ

C(γ)U(Γ/γ), (1.3)

where the sum is over divergent subgraphs. TheC(γ) are inductively defined counterterms,
obtained (in the minimal subtraction scheme) by taking the pole part (here denoted byT)
of the Laurent expansion inz = d −D of a divergent expression,

C(Γ ) = −T (R̄(Γ )) = −T

U(Γ )+

∑
γ⊂Γ

C(γ)U(Γ/γ)


 . (1.4)

The renormalized value ofΓ is then given by the formula:

R(Γ ) = R̄(Γ )+ C(Γ ) = U(Γ )+ C(Γ )+
∑
γ⊂Γ

C(γ)U (Γ/γ) . (1.5)

Before continuing with the physics, we need to introduce some algebraic notions that
will be useful in the rest of the paper.

1.4. Hopf algebras and affine group schemes

While affine schemes are the geometric manifestation of commutative algebras, affine
group schemes are the geometric counterpart of commutative Hopf algebras. The theory of
affine group schemes is developed in SGA 3[26].

Consider a commutative Hopf algebraH over a fieldk, which we assume here of char-
acteristic zero. Thus,H is a commutative algebra with unit overk, endowed with a (not
necessarily co-commutative) coproduct∆ : H→ H⊗k H, a co-unitε : H→ k, which are
k-algebra morphisms and an antipodeS : H→ Hwhich is ak-algebra antihomomorphism.
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These satisfy the “co-rules”:

(∆⊗ id)∆ = (id ⊗∆)∆ : H→ H⊗k H⊗k H,
(id ⊗ ε)∆ = id = (ε⊗ id)∆ : H→ H,
m(id ⊗ S)∆ = m(S ⊗ id)∆ = 1ε : H→ H,

(1.6)

where we usedm to denote multiplication inH.
One then letsG = SpecH be the set of prime ideals of the commutativek-algebraH,

with the Zariski topology. The Zariski topology is too coarse to fully recover the “algebra
of coordinates”H from the topological space Spec(H), but one recovers it through the data
of the structure sheaf, i.e. by considering global sections of the “sheaf of functions” on
Spec(H).

SinceH is a commutativek-algebra,G = Spec(H) is an affine scheme overk, while
the additional structure given by the co-rules(1.6) endowG = Spec(H) with a product
operation, a unit, and an inverse.

More precisely, one can view suchGas a functor that associates to any unital commutative
algebraA overk a groupG(A), whose elements are thek-algebra homomorphisms

φ : H→ A, φ(x y) = φ(x)φ(y), ∀x, y ∈ H, φ(1)= 1.

The product inG(A) is given as the dual of the coproduct, by:

φ1 � φ2(x) = 〈φ1⊗ φ2,∆(x)〉. (1.7)

The inverse and the unit ofG(A) are determined by the antipode and the co-unit ofH.
The co-rules imply that these operations define a group structure onG(A). The resulting
covariant functor

A→ G(A)

from commutative algebras to groups is representable (in fact byH). The functorGobtained
in this way is called anaffine group scheme. Conversely, any covariant representable functor
from the category of commutative algebras overk to groups, is an affine group schemeG,
represented by a commutative Hopf algebra, uniquely determined up to canonical isomor-
phism.

Some simple examples of affine group schemes:

• The multiplicative groupG = Gm is the affine group scheme obtained from the Hopf
algebraH = k[t, t−1] with coproduct∆(t) = t ⊗ t.

• The additive groupG = Ga corresponds to the Hopf algebraH = k[t] with coproduct
∆(t) = t ⊗ 1+ 1⊗ t.

• The affine group schemeG = GLn corresponds to the Hopf algebra

H = k[xi,j, t]i,j=1,...,n

det(xi,j)t − 1
,
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with coproduct∆(xi,j) =
∑
k xi,k ⊗ xk,j.

The latter example is quite general. In fact, ifH is finitely generated as an algebra over
k, then the corresponding affine group schemeG is a linear algebraic group overk, and can
be embedded as a Zariski closed subset in someGLn. Moreover, in the more general case,
one can find a collectionHi ⊂ H of finitely generated algebras overk such that∆(Hi) ⊂
Hi ⊗Hi,S(Hi) ⊂ Hi, for all i, and such that, for alli, j there exists akwithHi ∪Hj ⊂ Hk,
andH = ∪iHi. In this case, one obtains linear algebraic groupsGi = Spec(Hi) such that

G = lim
←−
i

Gi. (1.8)

Thus, in general, an affine group scheme is a projective limit of linear algebraic groups.
If theGi are unipotent, thenG is a pro-unipotent affine group scheme.

The Lie algebrag(k) = LieG(k) is given by the set of linear mapsL : H→ k satisfying:

L(XY ) = L(X)ε(Y )+ ε(X)L(Y ), ∀X, Y ∈ H, (1.9)

whereε is the co-unit ofH, playing the role of the unit in the dual algebra. Equivalently,
g = LieG is a covariant functor:

A→ g(A), (1.10)

from commutativek-algebras to Lie algebras, whereg(A) is the Lie algebra of linear maps
L : H→ A satisfying(1.9).

1.5. Hopf algebra of Feynman graphs and diffeographisms

The Kreimer Hopf algebra of[43] is based on rooted trees, which organize the hierarchy
of subdivergences in a given graph. The Hopf algebra depends on the particular physical
theory T through the use of trees whose vertices are decorated by the divergence free
Feynman graphs of the theory (cf.[43,15]). In the work of Connes–Kreimer[16], this Hopf
algebra was refined to a Hopf algebraH(T ), also dependent on the physical theoryT by
construction, which is directly defined in terms of Feynman graphs.

The CK Hopf algebra is the free commutative algebra overk = C generated by one
particle irreducible (1PI) graphsΓ (p1, . . . , pn), whereΓ is not a tree. A graphΓ is 1PI
if it cannot be disconnected by the removal of a single edge. Here, one considers graphs
endowed with external momenta (p1, . . . , pn). To account for this external structure one
considers distributionsσ ∈ C−∞c (EΓ ) for

EΓ =
{

(pi)i=1,...,N ;
∑

pi = 0
}
,

and the symmetric algebraH = S(C−∞c (∪EΓ )), with ∪EΓ the disjoint union.
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The coproduct is given by a formula that reflects the BP preparation(1.3), namely, it is
given on generators by the expression:

∆(Γ ) = Γ ⊗ 1+ 1⊗ Γ +
∑
γ⊂Γ

γ(i) ⊗ Γ/γ(i). (1.11)

Here, the sum is over divergent subgraphsγ ⊂ Γ andΓ/γ denotes the graph obtained by
contractingγ to a single vertex. In(1.11)the notationγ(i) accounts for the fact that one has to
specify how to assign the external structure toγ, depending on the type of the corresponding
vertex inΓ/γ(i), cf. [16].

Up to passing to the Hopf subalgebra constructed on 1PI graphs with fixed external
structure, one can reduce to a Hopf algebraH(T ) that is finite dimensional in each degree,
where the degree is defined on 1PI graphs by the loop number. There is an affine group
scheme associated to this Hopf algebraH(T ). This is called the group ofdiffeographisms
G = Difg(T ) of the physical theory. It is a pro-unipotent affine group scheme.

The reason for the terminology lies in the fact that Difg(T ) has a close relation to the
group of formal diffeomorphisms of the complexified coupling constants of the theory. In
the simplest case, this group is the group Diff(C) of formal diffeomorphisms of the complex
line tangent to the identity. The latter corresponds to the Hopf algebraHdiff whose generators
an are obtained by writing formal diffeomorphisms asϕ(x) = x+∑n≥2 an(ϕ)xn, and with
coproduct〈∆an, ϕ1⊗ ϕ2〉 = an(ϕ2 ◦ ϕ1). A Hopf algebra homomorphism is obtained by
writing the effective coupling constant as a formal power seriesgeff(g) = g+

∑
n≥2 αn g

n,
where all the coefficientsαn are finite linear combinations of products of graphs,αn ∈ H,
for all n ≥ 1 and mappingan �→ αn, cf. [16].

2. Birkhoff factorization and renormalization

Suppose given a complex Lie groupG(C) and a smooth simple curveC ⊂ P1(C), with
C± the two complementary regions, with∞ ∈ C−. For a given loopγ : C→ G(C), the
problem of Birkhoff factorization asks whether there exist holomorphic mapsγ± : C± →
G(C), such that

γ (z) = γ−(z)−1γ+(z) z ∈ C. (2.1)

This procedure of factorization of Lie group valued loops became well known in al-
gebraic geometry because of its use in the Grothendieck–Birkhoff decomposition[31] of
holomorphic vector bundles on the sphereP1(C). In this case, the Lie group isGLn(C) and
a weaker form of(2.1)holds, whereby loops factor as:

γ(z) = γ−(z)−1λ(z)γ+(z), (2.2)

whereλ(z) is a diagonal matrix with entries (zk1, zk2, . . . , zkn ). The Grothendieck–Birkhoff
decomposition hence states that a holomorphic vector bundle onP1(C) can be described
asE = Lk1 ⊕ · · · ⊕ Lkn , where the line bundlesLki have Chern classc1 (Lki ) = ki. This
corresponds to the Birkhoff decomposition(2.1)whenc1 (Lki ) = 0.

From a more analytic viewpoint (cf. e.g.[7]), the Birkhoff factorizations(2.1) or (2.2)
can be viewed as a (homogeneous)transmission problem, which can be formulated in
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terms of systems of singular integral equations, with various regularity assumptions. Such
transmission problems can be recast in the context of the theory of Fredholm pairs, obtained
by considering the spaces of boundary values, on a simple closed curveC, of sections of
holomorphic vector bundles onP1(C).

2.1. BPHZ as a Birkhoff factorization

One of the key results of the Connes–Kreimer theory of perturbative renormalization
[16,17] is a reformulation of the BPHZ procedure as a Birkhoff factorization in the pro-
unipotent Lie groupG(C) associated to the affine group schemeG = Difg(T ).

Unlike the case ofGLn, where the Birkhoff decomposition(2.1)only holds whenki = 0,
in the case of interest for renormalization one always has a factorization(2.1). This follows
from a result of Connes–Kreimer, which we recall inProposition 2.1below. For the general
case whereG is the pro-unipotent affine group scheme of a Hopf algebra that is graded in
positive degree and connected, the result shows that a factorization of the form(2.1)always
exists. The result, in fact, provides an explicit recursive formula, in Hopf algebra terms,
which determines both terms in the factorization.

In this setup, the Lie groupG(C) is the set of complex points of an affine group schemeG,
whose commutative Hopf algebraH is graded in positive degreesH = ∪kHk and connected
(i.e. the only elements of degree 0 inH are the scalars).

We letK = C({z}) be the field of Laurent series convergent in some neighborhood
of the origin (i.e. germs of meromorphic functions at the origin) andO = C{z} be the
ring of convergent power series, and we letQ = z−1 C([z−1]), with Q̃ = C([z−1]) the
corresponding unital ring. Then a loopγ : C→ G, for C an infinitesimal circle around
the origin, is equivalently described by a homomorphismφ : H→ K, i.e. by a point in
G(K). Because the group structure onG corresponds to the co-rules of the Hopf algebra
H, the product of loopsγ(z) = γ1(z)γ2(z), for z ∈ C, corresponds toφ = φ1 � φ2 (dual to
the coproduct inH) and the inversez �→ γ(z)−1 to the antipodeφ ◦ S.

For z = 0 ∈ C+, the condition that the loopγ extends to a holomorphic function
γ : P1(C)\{0} → G is equivalent to the condition that the homomorphismφ lies in
G(Q̃) = {φ, φ(H) ⊂ Q̃}, while the condition thatγ(0) is finite translates in the condition
thatφbelongs toG(O) = {φ, φ(H) ⊂ O}. The normalization conditionγ(∞) = 1 translates
algebraically into the conditionε− ◦ φ = ε, whereε− is the augmentation in the ring̃Q and
ε is the augmentation (co-unit) ofH. This dictionary shows how interpreting affine group
schemes as functors of unital commutative algebras to groups provides a very convenient
language in which to reformulate the problem of Birkhoff factorization.

Proposition 2.1. ([16]) LetH be a Hopf algebra that is graded in positive degree and
connected, and G the corresponding affine group scheme. Then any loopγ : C→ G(C)
admits a Birkhoff factorization(2.1). An explicit recursive formula for the factorization is
given, in terms of the corresponding homomorphismφ : H→ C({z}), by the expressions:

φ−(X) = −T
(
φ(X)+

∑
φ−(X′)φ(X′′)

)
(2.3)
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and

φ+(X) = φ(X)+ φ−(X)+
∑

φ−(X′)φ(X′′), (2.4)

where T is the projection alongO to the augmentation ideal of̃Q (taking the pole part),
andX′ andX′′ denote the terms of lower degree in the coproduct∆(X) = X⊗ 1+ 1⊗
X+∑X′ ⊗X′′, for X ∈ H.

Applied to the Hopf algebraH(T ) of Feynman graphs, withG = Difg(T ), the formulae
(2.3) and (2.4)yield the counterterms(1.4)and the renormalized values(1.5) in the BPHZ
renormalization procedure.

2.2. Mass parameter, counterterms, and the renormalization group

In DimReg, when analytically continuing the Feynman graphs to complex dimension,
in order to preserve the dimensionality of the integrand in physical units, one needs to
replace the momentum space integrationdD−zk byµzdD−zk, whereµ is a mass parameter,
so that the resulting quantity has the correct dimensionality of (mass)D. This introduces
a dependence on the parameterµ in the loopγµ(z) describing the unrenormalized theory.
The behavior of a renormalizable theory under rescaling of the mass parameterµ �→ etµ,
for t ∈ R, was analyzed in[35].

An important result, which will play a crucial role in our geometric formulation in Section
5, is thatthe counterterms do not depend on the mass parameterµ (cf. [13] Sections 5.8
and 7.1). This result translates in terms of the Birkhoff factorization to the condition that
the negative partγµ− (z) of the factorizationγµ(z) = γµ− (z)−1γµ+ (z) satisfies

∂

∂µ
γµ− (z) = 0. (2.5)

The effect of scaling the mass parameter on the loopγµ(z) is instead described by the
action of the 1-parameter group of automorphisms generated by the grading by loop number.
Namely, if θt denotes the 1-parameter group with infinitesimal generatord

dt θt|t=0 = Y ,
whereY is the grading by loop number, we have:

γetµ(z) = θtz(γµ(z)), ∀ t ∈ R, (2.6)

and for allz in an infinitesimal punctured neighborhood∆∗ of the originz = d −D = 0.
A well known but unpublished result of ’t Hooft shows that the counterterms in a renor-

malizable quantum field theory can be reconstructed from the beta function of the theory.
In the context of the Connes–Kreimer theory of perturbative renormalization, this can be
seen in the following way.

The beta function here is lifted from the space of the coupling constants of the theory to
the group of diffeographisms, namely, it can be regarded as an element in the Lie algebra
LieG satisfying:

β = Y Resγ, (2.7)
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whereY is the grading by loop number, and the residue ofγ is given by:

Resz=0γ = −
(
∂

∂u
γ−
(

1

u

))
u=0

. (2.8)

The beta function is the infinitesimal generatorβ = d
dt rg t|t=0 of the renormalization group:

rg t = limz→0γ−(z)θtz(γ−(z)−1). (2.9)

Correspondingly, the renormalized value, that is, the finite valueγ+µ (0) of the Birkhoff
decomposition satisfies the equation:

µ
∂

∂µ
γ+µ (0)= βγ+µ (0). (2.10)

A strong form of the ’t Hooft relations, deriving the counterterms from the beta function,
is given by the following result.

Proposition 2.2. ([17]) The negative part of the Birkhoff factorizationγ−(z) satisfies:

γ−(z)−1 = 1+
∞∑
n=1

dn

zn
, (2.11)

where the coefficientsdn are given by iterated integrals:

dn =
∫
s1≥s2≥···≥sn≥0

θ−s1(β)θ−s2(β) . . . θ−sn (β)ds1 · · · dsn. (2.12)

The result can be formulated (cf.[17]) as a scattering formula:

γ−(z) = lim
t→∞e−t((β/z)+Z0)etZ0, (2.13)

whereZ0 is the additional generator of the Lie algebra ofG�θ Ga, satisfying:

[Z0, X] = Y (X) ∀X ∈ LieG. (2.14)

This form of the ’t Hooft relations and the explicit formula(2.12) in terms of iterated
integrals are the starting point for our formulation of perturbative renormalization in terms
of the Riemann–Hilbert correspondence and for the relation to motivic Galois theory.

Before continuing with a more detailed account of these topics, we give an introductory
tour of some ideas underlying the theory of motives and the Riemann–Hilbert correspon-
dence, that we will need in order to introduce the main result of[18].

3. The yoga of motives: cohomologies as avatars

There are several possible cohomology theories that can be applied to algebraic varieties.
Over a fieldk of characteristic zero one has de Rham cohomologyH ·dR(X) = H·(X,Ω·X),
defined in terms of sheaves of differential forms, and Betti cohomologyH ·B(X,Q), which is
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a version of singular homology forσX(C), for an embeddingσ : k ↪→ C. These are related
by the periods isomorphism

HidR(X, k)⊗σ C ∼= HiB(X,Q)⊗Q C.

Over a perfect field of positive characteristic there is also crystalline cohomology, while in
all characteristics one can considerétale cohomology given by finite dimensionalQ8-vector
spacesHiet(X̄,Q8), whereX̄ is obtained by extension of scalars to an algebraic closurek̄,
and8 �= chark. In the smooth projective case, these have the expected properties of Poincaré
duality, Künneth isomorphisms, etc. Moreover,étale cohomology provides interesting8-
adic representations of Gal(k̄/k). There are comparison isomorphisms

HiB(X,Q)⊗Q Q8 ∼= Hiet(X̄,Q8).

The natural question is then what type of information, such as maps or operations on one
cohomology, can be transferred to the other ones. This gave rise to the idea, proposed by
Grothendieck, of the existence of a “universal cohomology theory” with realization functors
to all the known cohomology theories for algebraic varieties. He called this the theory of
motives.

A metaphor[33] justifying the terminology is provided by music scores, some of which
(such as Bach’s “Art of the fugue") are not written for any particular instrument. They are
just the motive, which in turn can be realized on different musical instruments. Another
powerful metaphor is provided by the notion of avatar in Hindu philosophy, which expresses
the idea of a single entity manifesting itself in manifold incarnations (the 10 avatars of
Vishnu).

We will present here only a very short overview of some ideas and results about mo-
tives, following[23,48,58,59,4,24,30,46]. We start first by recalling some general algebraic
formalism we will need in the following.

3.1. Tannakian categories

The basis for a Galois theory of motives lies in a suitable categorical formalism. This
was first proposed by Grothendieck, who used the term Galois–Poincaré categories (or
rigid tensor categories), and was then developed by Saavedra[56], who introduced the now
currently adopted terminology of Tannakian categories, and by Deligne and Milne[25] (cf.
also the more recent[22]).

It is well known that there are many deep analogies between the theory of coverings of
topological spaces and Galois theory. The analogy starts with the observation that, in cases
where the covering spaces are defined by algebraic equations, the Galois symmetries of the
equation actually correspond to deck transformations of the covering space.

Grothendieck brought this initial simple analogy to far reaching consequences. He de-
veloped a common formalism where fundamental groups (of a space, a scheme, or much
more generally a topos) and Galois groups both fit naturally. The idea is that, in this very
general setting, the group always arises as the group of automorphisms of a fiber functor
on a suitable “category of coverings”. The theory of the (pro-finite) fundamental groups
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is based on the existence of a fiber functor from a certain categoryC of finite étale covers
of a connected schemeS, with values in finite sets. Then such functorω yields an equiv-
alence of categories betweenC andG-sets forG = Aut(ω) a pro-finite group. This yields
a profinite completion of the fundamental group. ForS = Spec(K), it gives Galois theory,
thus effectively bringing fundamental groups and Galois groups within the same general
formalism.

This is the fundamental idea that guided the development of a motivic Galois theory.
The latter appeared as a “linear” version of the general formalism described above, where
the fiber functor is a faithful and exact tensor functor with values in vector spaces (instead
of finite sets), and the Galois group is the affine group schemeG = Aut⊗(ω).

More precisely, an abelian category is a category to which the tools of homological
algebra apply, that is, a category where the sets of morphisms are abelian groups, there are
products and coproducts, kernels and cokernels always exist and satisfy the same basic rules
as in the category of modules over a ring. A tensor category over a fieldkof characteristic zero
is ak-linear abelian categoryT endowed with a tensor functor⊗ : T× T → T satisfying
associativity and commutativity laws defined by functorial isomorphisms, and with a unit
object. Moreover, for each objectX, there exists a dualX∨ and mapsev : X⊗X∨ → 1 and
δ : 1→ X⊗X∨, such that the composites (ev⊗ 1) ◦ (1⊗ δ) and (1⊗ ev) ◦ (δ⊗ 1) are the
identity, with an identificationk  End(1).

A Tannakian categoryT overk is a tensor category endowed with a fiber functor, namely
a faithful exact functorω to finite dimensional vector spaces VectK, for K an extension of
k, satisfyingω(X)⊗ ω(Y )  ω(X⊗ Y ) compatibly with associativity commutativity and
unit. (A more general formulation can be given with values in locally free sheaves over a
scheme, see[22].) A neutralTannakian categoryT has a Vectk-valued fiber functorω. In
this case, the main result is that the fiber functorω induces an equivalence of categories
betweenT and the category RepG of finite dimensional linear representations of a uniquely
determined affine group schemeG = Aut⊗(ω), given by the automorphisms of the fiber
functor.

A k-linear abelian categoryT is semi-simple if there existsA ⊂ Ob(T) such that all
objectsX in A are simple (namely Hom(X,X)  k), with Hom(X, Y ) = 0 forX �= Y in A,
and such that every object ofT is isomorphic to a direct sum of objects in A. The affine
group schemeG of a neutral Tannakian category is pro-reductive if and only if the category
is semi-simple.

As an example, one can consider the category of finite dimensional complex linear
representations of a group. It is not hard to see what is in this case the structure of neutral
Tannakian category, with fiber functor the forgetful functor to complex vector spaces. The
affine group scheme determined by this neutral Tannakian category is called the “algebraic
hull" of the group. In the case of the groupZ, the algebraic hull is an extension ofẐ,
with the corresponding commutative Hopf algebra given byH = C[e(q), t], for q ∈ C/Z,
with the relationse(q1+ q2) = e(q1)e(q2) and the coproduct∆(e(q)) = e(q)⊗ e(q) and
∆(t) = t ⊗ 1+ 1⊗ t.

The non-neutral case whereω takes values in VectK for some extension ofk, or the
more general case of locally free sheaves over a scheme, can also be identified with a
category of representations, but now the groupG is replaced by a groupoid (Grothendieck’s
Galois–Poincaŕe groupoid). This corresponds to the fact that, even in the original case of
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fundamental groups of topological spaces, it is more natural to work with the notion of
fundamental groupoid, rather than with the base point dependent fundamental group. For
our purposes, however, it will be sufficient to work with the more restrictive notion of neutral
Tannakian category.

3.2. Gauge groups and categories

In [22], Section 7, Deligne gives a characterization of Tannakian categories, over a field
kof characteristic zero, as tensor categories where the dimensions are positive integers. The
dimension ofX ∈ T is defined in this context as Tr(1X), where Tr(f ) = ev ◦ δ(f ).

This characterization is very close to results developed via different techniques by Do-
plicher and Roberts in the context of algebraic quantum field theory,[27]. Their motivation
was to derive the existence of a global compact gauge group, given the local observables of
the theory. The group is obtained from a monoidalC∗-category where the objects are endo-
morphisms of certain unitalC∗-algebras and the arrows are intertwining operators between
these endomorphisms. They obtain a characterization of those monoidalC∗-categories that
are equivalent to the category of finite dimensional continuous unitary representations of a
compact group, unique up to isomorphism. Though the context and the techniques employed
in the proof are different, the result has a flavor similar to the relation between Tannakian
categories and affine group schemes. In their proof, a characterization analogous to the one
of [22], Section 7 of the integer dimensions also plays an important role.

3.3. Pure and mixed motives

The first constructions of a category of motives proposed by Grothendieck covers the
case of smooth projective varieties. The corresponding motives form aQ-linear abelian
categoryMpure(k) of pure motives. There is a contravariant functor assigning a motive to
a variety:

X �→ h(X) = ⊕ihi(X). (3.1)

If hj = 0, for all j �= i, the motive ispure of weight i. This way a pure motive can be
thought of as a “direct summand of an algebraic variety”. The morphisms Hom(X, Y ) in the
category of motives are given bycorrespondences, namely algebraic cycles in the product
X× Y of codimension equal to the dimension ofX, modulo a suitable equivalence relation.
Different choices of the notion of equivalence for algebraic cycles produce variants of the
theory, ranging from the coarsest numerical equivalence to the finest rational equivalence
(Chow groups). The objects of the category also include kernels of projectors, namely of
idempotents in Hom(X, Y ). Thus, forp = p2 ∈ End(X) andq = q2 ∈ End(Y ), one takes
Hom((X,p), (Y, q)) = qHom(X, Y )p.

One also adds to the objects the Tate motiveQ(1), which is the inverse ofh2(P1). This
is a pure motive of weight−2. The category is endowed with a tensor product⊗ and a unit
Q(0)= h(pt). The Tate objectsQ(n) satisfy the ruleQ(n+m) ∼= Q(n)⊗Q(m).

Grothendieck formulated a set ofstandard conjecturesabout pure motives, which are at
present still unproven. Assuming the standard conjectures, the category of pure motives is
a neutral Tannakian category, with fiber functors given by Betti cohomology (characteristic
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zero case). Thus, the category of pure motives is equivalent to the category of representations
RepG of an affine group schemeG. This group is called themotivic Galois group. The
category of pure motives is conjecturally semi-simple, hence for pure motivesG is pro-
reductive.

When one considers certain subcategories of the category of motives, one obtains a
corresponding Galois group, which is a quotient of the originalG. For instance, if the
subcategory is generated by a singleX, one obtains a quotientGX, whose identity component
is the Mumford–Tate group ofX. The subcategory of pure Tate motives, generated byQ(1)
has as motivic Galois group the multiplicative groupGm.

Some of the first unconditional results about motives were obtained in[48]. In general, a
serious technical obstacle in the development of the theory of motives, which accounts for
the fact that, decades after its conception, the theory is still largely depending on conjectures,
is the fact that not enough is known about algebraic cycles. The situation gets even more
complicated when one wishes to consider more general algebraic varieties, which need not
be smooth projective. This leads to the notion ofmixed motiveswithMpure(k) ⊂Mmix(k).

Over a field of characteristic zero (where one has resolution of singularities), one can
always write suchX as a disjoint union ofXi −Di, where theXi are smooth projective
and theDi are lower dimensional. Thus, one can assign toX a virtual object in a suitable
Grothendieck group of algebraic varieties; however, if one wants a theory that satisfies the
main requirements of a category of motives, including the fact of providing a universal
cohomology theory (via the Ext functors), the construction of such a category of mixed
motives remains a difficult task.

The main properties for a category of mixed motives are that it should be aQ-linear tensor
category containing the Tate objectsQ(n) with the usual properties, endowed with a functor
X �→ h(X) that assigns motives to algebraic varieties, with properties like Künneth isomor-
phisms. Moreover, the Ext functors in this category of mixed motives define a “motivic
cohomology”:

E
i,j
2 = Exti(Q(0), hj(X)⊗Q(n)) ⇒ H

i+j
mot(X,Q(n)). (3.2)

One expects also this motivic cohomology to come endowed with Chern classes from
algebraicK-theory. In fact, if one uses the decompositionKn(X)⊗Q = ⊕jKn(X)(j), where
the Adams operationBk acts onKn(X)(j) askj, then one expects isomorphisms given by
Chern classes

chj : Kn(X)(j)
 →H

2j−n
mot (X,Q(j)).

Such motivic cohomology will be universal with respect to all cohomology theories for
algebraic varieties satisfying certain natural properties (Bloch–Ogus axioms). Namely, for
any such cohomologyH∗(·, Γ (∗)) there will be a natural transformationH∗mot(·,Z(∗)) →
H∗(·, Γ (∗)), compatible with the above isomorphisms. Mixed motives have increasing
weight filtrations preserved by the realizations to cohomology theories. More generally,
instead of working over a fieldk, one can consider a categoryMmix(S) of motives (or
“motivic sheaves”) over a schemeS. In this case, the functors above are natural inSand to
a map of schemesf : S1 → S2 there correspond functorsf ∗, f∗, f ! , f! , behaving like the
corresponding functors of sheaves.
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The motivic Galois group for mixed motives will then be an extension of the pro-reductive
motivic Galois group of pure motives by a pro-unipotent group. The pro-unipotent property
reflects the presence of the weight filtration on mixed motives.

Though, at present, there is not yet a general construction of such a category of mixed
motivesMmix(S), there are constructions of a triangulated tensor categoryDM(S), which
has the right properties to be the bounded derived category of the category of mixed mo-
tives. The constructions ofDM(S) due to Levine[46] and Voevodsky[61] are known to
be equivalent. In general, given a construction of a triangulated tensor category, one can
extract from it an abelian category by considering theheart of a t-structure. A caveat with
this procedure is that it is not always the case that the given triangulated tensor category is in
fact the bounded derived category of the heart of at-structure. The available constructions,
in any case, are obtained via this general procedure oft-structures developed in[3], which
can be summarized as follows. A triangulated categoryD is an additive category with an
automorphismT and a family of distinguished trianglesX→ Y → Z→ T (X), satisfying
suitable axioms (which we do not recall here). We use the notationD≥n = D≥0[−n] and
D≤n = D≤0[−n], with X[n] = T n(X) andf [n] = T n(f ). A t-structure consists of two full
subcategoriesD≤0 andD≥0 with the properties:D≤−1 ⊂ D≤0 andD≥1 ⊂ D≥0; for all
X ∈ D≤0 and allY ∈ D≥1 one has HomD(X, Y ) = 0; for all Y ∈ D there exists a distin-
guished triangle as above withX ∈ D≤0 andZ ∈ D≥1. The heart of thet-structure is the
full subcategoryD0 = D≤0 ∩D≥0. It is an abelian category. This type of construction may
be familiar to physicists in the context of mirror symmetry, where continuous families of
hearts oft-structures play a role in[28].

For our purposes, we will be mostly interested in the full subcategory of Tate motives. The
triangulated category ofmixed Tate motivesDMT(S) is then defined as the full triangulated
subcategory ofDM(S) generated by the Tate objects. It is possible to define on it at-structure
whose heart gives a category of mixed Tate motivesMTmix(S), provided the Beilinson–
Souĺe vanishing conjecture holds, namely when:

Homj(Q(0),Q(n)) = 0, for n > 0, j ≤ 0. (3.3)

where Homj(M,N) = Hom(M,N[j]). The conjecture(3.3)is known to hold in the case of
a number field, where one has:

Ext1(Q(0),Q(n)) = K2n−1(k)⊗Q (3.4)

and Ext2(Q(0),Q(n)) = 0. Thus, in this case it is possible to extract from the triangulated
tensor category a Tannakian categoryMTmix(k) of mixed Tate motives, with fiber functor
ω to Z-gradedQ-vector spaces,M �→ ω(M) = ⊕nωn(M) with:

ωn(M) = Hom(Q(n),Grw−2n(M)), (3.5)

where Grw−2n(M) = W−2n(M)/W−2(n+1)(M) is the graded structure associated to the finite
increasing weight filtrationW.

The motivic Galois group of the categoryMTmix(k) is then an extensionG = U � Gm,
where the reductive piece isGm as in the case of pure Tate motives, whileU is pro-unipotent.
By the results of Goncharov (see[30,24]), it is known that the pro-unipotent affine group
schemeU corresponds to a graded Lie algebra Lie (U) that is free with one generator in
each odd degreen ≤ −3.
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A similar construction is possible in the case of the categoryMTmix(S), where the
schemeS is the set ofV-integersOV of a number fieldk, for V a set of finite places ofk. In
this case, objects ofMTmix(OV ) are mixed Tate motives overk that are unramified at each
finite placev /∈ V . ForMTmix(OV ), we have:

Ext1(Q(0),Q(n)) =



K2n−1(k)⊗Q n ≥ 2

O∗V ⊗Q n = 1

0 n ≤ 0.

(3.6)

and Ext2(Q(0),Q(n)) = 0. In fact, the difference between the Ext inMTmix(OV ) of (3.6)
and the Ext inMTmix(k) of (3.4) is the Ext1(Q(0),Q(1)) which is finite dimensional in
(3.6)and infinite dimensional in(3.4). The categoryMTmix(OV ) is also a neutral Tannakian
category, and the fiber functor determines an equivalence of categories betweenMTmix(OV )
and finite dimensional linear representations of an affine group scheme of the formU � Gm
with U pro-unipotent. The Lie algebra Lie(U) is freely generated by a set of homogeneous
generators in degreen identified with a basis of the dual of Ext1(Q(0),Q(n)) (cf. Proposition
2.3 of [24]). There is however nocanonicalidentification between Lie(U) and the free Lie
algebra generated by the graded vector space⊕Ext1(Q(0),Q(n))∨.

We mention the following case, which will be the one most relevant in the context of
perturbative renormalization.

Proposition 3.1. ([24,30]) Consider the schemeSN = O[1/N] for k = Q(ζN ) the cy-
clotomic field of level N andO its ring of integers. For N = 3 or 4, the motivic Galois
group of the categoryMTmix(SN ) is of the formU � Gm, where the Lie algebraLie(U) is
(noncanonically) isomorphic to the free Lie algebra with one generatoren in each degree
n ≤ −1.

4. Hilbert’s XXI problem and the Riemann–Hilbert correspondence

Consider an algebraic linear ordinary differential equation, in the form of a system of
rankn:

d

dz
f (z)+ A(z)f (z) = 0 (4.1)

on some open setU = P1(C) \ {a1, . . . , ar}, whereA(z) is ann× n matrix of rational
functions onU. In particular, this includes the case of a linear scalarnth order differen-
tial equation. The spaceS of germs of holomorphic solutions of(4.1) at a pointz0 ∈ U
is ann-dimensional complex vector space. Moreover, given any element8 ∈ π1(U, z0),
analytic continuation along a loop representing the homotopy class8 defines a linear au-
tomorphism ofS, which only depends on the homotopy class8. This defines themon-
odromy representationρ : π1(U, z0) → Aut(S) of the differential system(4.1). A slightly
different formulation requires not theFuchsian condition(A(z) has simple poles) but the
weakerregular singular conditionfor (4.1). The regularity condition at a singular point
ai ∈ P1(C) \ U is a growth condition on the solutions, namely all solutions in any strict
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angular sector centered atai have at most polynomial growth in 1/|z− ai|. The system
(4.1) is regular singular if everyai ∈ P1(C) \ U is a regular singular point. The Hilbert
21st problem (or Riemann–Hilbert problem) asks whether any finite dimensional com-
plex linear representation ofπ1(U, z0) is the monodromy representation of a differential
system(4.1) with regular (or Fuchsian) singularities at the points ofP1(C) \ U. A solu-
tion to the Hilbert 21st problem in the regular singular case is given by Plemelj’s the-
orem (cf. [1] Section 3). The argument first produces a system with the assigned mon-
odromy onU, where in principle an analytic solution has no constraint on the behav-
ior at the singularities. Then, one restricts to alocal problemin small punctured disks
∆∗ around each of the singularities, for which a system exists with the prescribed be-
havior of solutions at the origin. The global trivialization of the holomorphic bundle
on U determined by the monodromy datum yields the patching of these local prob-
lems that produces a global solution with the correct growth condition at the singulari-
ties.

4.1. From problem to correspondence

A modern revival of interest in Fuchsian differential equation, with a new algebraic
viewpoint that slowly transformed the original Riemann–Hilbert problem into the broad
landscape of the Riemann–Hilbert correspondence, was pioneered in the early 1960s by
the influential paper of Yuri Manin[47] on Fuchsian modules. This new perspective in-
fluenced the work of Deligne[21] in 1970, who solved the Riemann–Hilbert problem for
regular singular equations on an arbitrary smooth projective variety. In this viewpoint, if
X is a smooth projective variety andU is a Zariski open set, withX \ U a union of di-
visors with normal crossing, the data of an algebraic differential system are given by a
pair (M,∇) of a locally free coherent sheaf onU with a connection∇ : M → M ⊗Ω1

U/C,

while the regular singular condition says that there exists an algebraic extension (M̄, ∇̄) of
the data (M,∇) to X, where the extended connection̄∇ : M̄ → M̄ ⊗Ω1

X/C(logD) has log
singularities at the divisorD. The reconstruction argument for algebraic linear differential
systems with regular singularities in terms of their monodromy representation consists then
of first producing an analytic solution (M,∇) on U with the prescribed monodromy and
then restricting to a local problem in punctured polydisks∆∗ around the singularities, to

obtain a local extension of the formH(z)
∏
j z
Bj
j , whereH ∈ GLn(O∆∗ ) and theBj are

commuting matrices that give the local monodromy representation exp(2πiBj) of π1(∆∗).
An important point of the argument is to show that these local extensions can be patched
together. The patching problem does not arise when dimU = 1, since in that case the di-
visor D consists of isolated points. The construction is then completed by showing that
the global analytic extension (̄M, ∇̄) obtained this way onX is equivalent to an algebraic
extension.

Starting with the early 1980s, with the work of Mebkhout[51,52] and of Kashiwara
[38,39], and with the development of the theory of perverse sheaves by Beilinson, Bern-
stein, Deligne, and Gabber[3], the Riemann–Hilbert correspondence was recast in terms of
an equivalence of derived categories between regular holonomicDX-module and perverse
sheaves. A reason for introducing the language ofD-modules (cf. e.g.[29] Section 8 or[45]
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for an overview) is that this captures more information in a differential system (M,∇), than
what was possible with the previous formulations. For instance, the data (M,∇) fit into a de
Rham type complex. Also, one may want to consider different classes of solutions (smooth,
holomorphic, distributional, etc.). This type of extra information is taken care of by the for-
malism ofD-modules. Namely, a differential equation determines a moduleMoverDX (dif-
ferential operators onXwith holomorphic coefficients), with solutions to the equation given
by HomDX (M,OX). One can alter the type of solutions by replacingOX by another module
NoverDX, and account for the extra structure in the data (M,∇) by considering the de Rham
complexM⊗OX ΩX. The condition of regular singularities can be extended to modulesM
subject to another ‘growth’ condition, related to the module structure, compatibly with a nat-
ural filtration ofDX (holonomicD-modules). Then the equivalence of categories extends to
an equivalence of derived categories, between regular holonomicDX-module and perverse
sheaves.

With the regular singular hypothesis replaced by the stronger Fuchsian condition, as
in Hilbert’s original formulation, counterexamples to the Riemann–Hilbert problem were
later found by Bolibruch[8], in the simplest case ofX = P1(C). On the other hand, one
can instead relax the regular singular condition and look at classes of differential systems
with irregular singularities. It is immediately clear that finite dimensional complex linear
representations of the fundamental group no longer suffice to distinguish equations that can
have very different analytic behavior at the singularities and equal monodromy. One can

see this in a simple example, where all equations of the formd
dzf (z)+ 1

z2
P
(

1
z

)
f (z) = 0

have trivial monodromy, for any polynomialP, but they all have inequivalent behavior at
the singularityz = 0.

Thus, one needs a refinement of the fundamental group, whose finite dimensional
linear representations are equivalent to (a given class of) irregular differential systems.
There are different approaches to the irregular case. Since we are directly interested in
the case relevant to perturbative renormalization, we might as well restrict our atten-
tion to the one dimensional setting, namely where dimU = 1 andX is a compact Rie-
mann surface. In fact, in our caseX = P1(C) will be sufficient, as we will be inter-
ested only in the local problem in a punctured disk∆∗. As we discuss in Section5
below, in physical terms∆∗ represents the space of complexified dimensions around a
given integer dimensionD at which the Feynman integrals of the specified theoryT are
divergent.

In this context, the theory that best fits our needs for the application to renormalization
was developed by Martinet and Ramis[50], where instead of the usual fundamental group
one considers representations of awild fundamental group, which arises from the asymptotic
theory of divergent series and differential Galois theory.

4.2. Differential Galois theory and the wild fundamental group

We consider a local version of the irregular Riemann–Hilbert correspondence, in a small
punctured disk∆∗ in the complex plane around a singularityz = 0. We work in the context
of differential Galois theory (cf.[53,54]). In this setting, one works over a differential
field (K, δ), such that the field of constantsk = Ker(δ) is an algebraically closed field
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of characteristic zero. One considers differential systems of the formδf = Af , for some
A ∈ End(n,K).

For k = C, at the formal level we are then working over the differential field of for-
mal complex Laurent seriesK = C((z)) = C[[z]][ z−1], with differentiationδ = z d

dz , while
at the non-formal level one considers the subfieldK = C({z}) of convergent Laurent
series.

Given a differential systemδf = Af , its Picard–Vessiot ringis aK-algebra with a dif-
ferentiation extendingδ. As a differential algebra it is simple and is generated overK by
the entries and the inverse determinant of a fundamental matrix for the equationδf = Af .
Thedifferential Galois groupof the differential system is given by the automorphisms of
the Picard–Vessiot ring commuting withδ.

The formalism of Tannakian categories, that we discussed in Section3 in the context
of motives, reappears in the present context and allows for a description of the differential
Galois group that fits in the same general picture we recalled regarding motivic Galois
groups.

In fact, if we consider the set of all possible such differential systems (differential modules
overK), these form a neutral Tannakian category, which can therefore be identified with the
category of finite dimensional linear representations of a unique affine group scheme over
the fieldk.

Similarly to what we discussed in the case of motivic Galois groups, any subcategoryT

that inherits the structure of a neutral Tannakian category in turn corresponds to an affine
group schemeGT. This is the universal differential Galois group of the class of differential
systems that form the categoryT. It can be realized as the automorphisms group of the
universal Picard–Vessiot ringRT. The latter is generated overK by the entries and inverse
determinants of the fundamental matrices of all the differential systems considered in the
categoryT.

There is therefore a clear analogy between the induced motivic Galois groups of certain
subcategories of, say, the category of mixed Tate motives that we discussed in Section3, and
the differential Galois group of certain classes of differential systems defining subcategories
of the neutral Tannakian category of irregular differential systems over a differential field
K. Our main result of[18], which we discuss in Section5 below, shows that the theory of
perturbative renormalization (in the DimReg and minimal subtraction scheme) identifies a
class of differential systems (dictated by physical assumptions), whose differential Galois
group is the motivic Galois group ofProposition 3.1.

The regular–singular case can be seen in this context as follows. The subcategory of
regular–singular differential modules overK = C((z)) is a neutral Tannakian category
equivalent toRepG, where the affine group schemeG is the algebraic hull̄Z of Z, generated
by the formal monodromyγ. The latter is the automorphism of the universal Picard–Vessiot
ring acting byγZa = exp(2πia)Za andγL = L+ 2πi on the generators{Za}a∈C andL,
which correspond, in angular sectors, to the powersza and the function log(z) (cf. [53]
Section III,[54]).

When one allows for an arbitrary degree of irregularity for the differential systems
δf = Af , the universal Picard–Vessiot ring of the formal theoryK = C((z)) is generated
by elements{Za}a∈C andL as before, and by additional elements{E(q)}q∈E, whereE =
∪ν∈N×Eν, forEν = z−1/νC[z−1/ν]. These additional generators correspond, in local sectors,
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to functions of the form exp(
∫
q dz
z

) and satisfy relationsE(q1+ q2) = E(q1)E(q2) and
δE(q) = qE(q).

Correspondingly, the universal differential Galois groupG is described by an exten-
sionT� Z̄, whereT = Hom(E,C∗) is theRamis exponential torus. The algebraic hull̄Z
generated by the formal monodromyγ acts as an automorphism of the universal Picard–
Vessiot ring by the same action as above on theZa and onL, and byγ E(q) = E(γq)
on the additional generators, where the action onE is given by the actionγ : q(z−1/ν) �→
q(exp(−2πi/ν) z−1/ν) of Z/νZ onEν. The exponential torus acts by automorphisms of the
universal Picard–Vessiot ringτZa = Za, τL = L andτ E(q) = τ(q)E(q), and the formal
monodromy acts on the exponential torus by (γτ)(q) = τ(γq).

Thus, at the formal level, the local irregular Riemann–Hilbert correspondence establishes
an equivalence of categories between the differential modules overK = C((z)) and finite
dimensional linear representations ofG = T� Z̄. Ramis’ wild fundamental group[50]
further extends this irregular Riemann–Hilbert correspondence to the non-formal setting.
In general, when passing to the non-formal level over convergent Laurent seriesK = C({z}),
the universal differential Galois group acquires additional generators, which depend upon
resummation of divergent series and are related to the Stokes phenomenon. However, there
are specific classes of differential systems (subcategories of differential modules overK),
for which the differential Galois group is the same overC((z)) and overC({z}) (cf. e.g.
Proposition 3.40 of[53]). In such cases, the wild fundamental group consists only of the
exponential torus and the formal monodromy. This is, in fact, the case in the class of
differential systems we obtain from the theory of perturbative renormalization, hence we
do not need to discuss here the more complicated case where Stokes phenomena are present,
and we simply refer the interested reader to[50,53,54].

5. Cartier’s dream of a cosmic Galois group

In the section “I have a dream” of[9], Pierre Cartier formulated the hypothesis of the
existence of a “cosmic Galois group”, closely related to the Grothendieck–Teichmüller
group[32], underlying the Connes–Kreimer theory of perturbative renormalization, that
would relate quantum field theory to the theory of motives and multiple zeta values.

We present in this section the main result of[18], which realizes Cartier’s suggestion,
by reformulating the Connes–Kreimer theory of perturbative renormalization in the form
of a suitable Riemann–Hilbert correspondence.

5.1. Equisingular connections

The first step, in order to pass to this type of geometric formulation, is to identify the
loopsγµ(z) = γµ,−(z)−1γµ,+(z) with solutions of suitable differential equations. The idea
of reformulating a Birkhoff factorization problem in terms of a class of differential equations
is familiar to the analytic approach to the Riemann–Hilbert problem (cf.[7]). In our setting,
the key that allows us to pass from the Birkhoff factorization to an appropriate class of
differential systems is provided by the ’t Hooft relations in the form ofProposition 2.2and
the scattering formula(2.13), reformulated more explicitly in terms of iterated integrals.
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Here, the main tool is thetime ordered exponential, formulated mathematically in terms
of Chen’s iterated integrals[11,12], also known (in the operator algebra context) as Araki’s
expansional[2].

We consider a commutative Hopf algebraH that is graded in positive degree and con-
nected, withG the corresponding affine group scheme andg = LieG. We assume thatH
is, in each degree, a finite dimensional vector space. Given ag(C)-valued smooth function
α(t) wheret ∈ [a, b] ⊂ R is a real parameter, the expansional is defined by the expression:

Te
∫ b
a
α(t)dt = 1+

∞∑
1

∫
a≤s1≤···≤sn≤b

α(s1) · · ·α(sn)
∏
dsj, (5.1)

where the products are in the dual algebraH∨ and 1∈ H∨ is the unit given by the augmen-
tationε. When paired with any elementx ∈ H, (5.1)reduces to a finite sum, which defines
an element inG(C).

The fact that, when pairing with elements inH one reduces to an algebraic (polynomial)
case plays an important role. In particular, it is related to the fact that, for the class of
differential systems we consider, the differential Galois group remains the same in the
formal and in the non-formal case, and we need not take into account the possible presence
of Stokes’ phenomena.

We are particularly interested in the following property of the expansional:(5.1) is the
valueg(b) at b of the unique solutiong(t) ∈ G(C) with valueg(a) = 1 of the differential
equation:

dg(t) = g(t)α(t)dt. (5.2)

More generally, if (K, δ) is a differential field withK ⊃ C and if g ∈ G(K) andg′ =
δ(g) is the linear mapH→ K defined asg′(x) = δ(g(x)) for x ∈ H, then the logarithmic
derivativeD(g) is defined as the linear mapH→ K of the formD(g) = g−1 � g′, with the
product dual to the coproduct ofH. It satisfies

〈D(g), x y〉 = 〈D(g), x〉ε(y)+ ε(x)〈D(g), y〉, ∀x, y ∈ H,

hence it gives an element in the Lie algebraD(g) ∈ g(K). We will work here with the field
of convergent Laurent seriesK = C({z}).

If we consider over∆∗ a differential system of the form

Df = ω, (5.3)

whereω is a flatg(K)-valued connection, then the condition of trivial monodromy

Te
∫ 1

0
γ∗ω = 1, (5.4)

for γ ∈ π1(∆∗, z0), ensures the existence of a solution. In the expansional form, this is given
by

g(z) = Te

∫ z
z0
ω
, (5.5)

independently of the path in∆∗ from z0 to z.
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The notion of equivalence relation that we consider for differential systems of the form
(5.3) is the following: two connectionsω andω′ are equivalent iff they are related by a
gauge transformationh ∈ G(O), withO ⊂ K the subalgebra of regular functions,

ω′ = Dh+ h−1ω h. (5.6)

The behavior of solutions at the singularity is the same for all equivalent connections.
When we regard the solutions asG(C)-valued loops, the equivalence(5.6)of the connections
translates to the fact that the loops have the same negative part of the Birkhoff decomposition.

So far we have not taken into account the fact that, in the case of perturbative renormal-
ization, the loopγµ(z) that corresponds to the unrenormalized theory depends on the mass
parameterµ, as discussed above in Section2.2. Because of the presence of this parameter,
the geometric reformulation in terms of a class of differential systems takes place, in fact, not
just on the 1-dimensional (infinitesimal) punctured disk∆∗ representing the complexified
dimensions of DimReg, but on a principalGm(C) = C∗-bundle over∆∗.

As we discuss below, the fact that the loopγµ(z) satisfies the properties(2.5) and (2.6)
will make it possible to treat this case, which lives naturally over a 2-dimensional space, by
applying the same techniques described in Section4.2 for the irregular Riemann–Hilbert
correspondence over the 1-dimensional domain∆∗.

The conditions (2.5) and (2.6)determine a class of differential systems associated to
perturbative renormalization. This is given by equivalence classes of flatequisingularG(C)-
connections, whereG = Difg(T ).

Letπ : B→ ∆ be a principalGm(C) = C∗-bundle, identified with∆× C∗ by the non-
canonical choice of a sectionσ : ∆→ B, σ(0)= y0. Physically, the latter corresponds to a
choice of the Planck constant. LetP = B×G(C) be the trival principalG(C)-bundle, and
B∗ andP∗ the restrictions to the punctured disk∆∗.

We say that the connectionω onP∗ isequisingularif it is Gm-invariant and its restrictions
to sections of the principal bundleB that agree at 0∈ ∆ are mutually equivalent, in the sense
that they are related by a gauge transformation by aG(C)-valuedGm-invariant maph regular
in B.

The notion ofequisingularityis introduced as a geometric reformulation of the properties
(2.5) and (2.6). In fact, the property that, when approaching the singular fiber, the type of
singularity does not depend on the section along which one restricts the connection but
only on the value of the section at 0∈ ∆ corresponds to the fact that the counterterms are
independent of the mass scale, as in(2.5).

Thus, we have identified a class of differential systems associated to a physical theoryT,
namely the equivalence classes of flat equisingularG(C)-valued connections onP, where
G = Difg(T ). We can then proceed to investigate the Riemann–Hilbert correspondence
underlying this class of differential systems.

The first step consists of writing solutions of(2.5) and (2.6)in expansional form through
the following result, which we can view as a stronger version of the ’t Hooft relations.

Proposition 5.1. Letγµ(z) be a family ofG(C)-valued loops satisfying the properties(2.5)
and(2.6). Then there exists a uniqueβ ∈ LieG(C) and a loopγreg(z) regular atz = 0,such
that
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γµ(z) = Te−
1
z

∫ −z logµ

∞ θ−t (β)dt
θz logµ(γreg(z)). (5.7)

Conversely, for anyβ and regular loopγreg(z) the expression(5.7)gives a solution to(2.5)
and(2.6). The Birkhoff decomposition ofγµ(z) is of the form:

γµ+ (z) = Te−
1
z

∫ −z logµ

0
θ−t (β)dt

θz logµ(γreg(z)),

γ−(z) = Te−
1
z

∫ ∞
0
θ−t (β)dt

.

(5.8)

Using the equivalent geometric formulation in terms of flat equisingular connections,
one then obtains the following result.

Proposition 5.2. Let ω be a flat equisingularG(C)-connection. There exists a unique
elementβ ∈ LieG(C), such thatω is equivalent to the flat equisingular connectionDγ for

γ(z, v) = Te−
1
z

∫ v
0
uY (β) du

u ∈ G(C), (5.9)

with the integral performed on the straight pathu = tv, t ∈ [0,1].

Here, a crucial point is the fact that the monodromies with respect to the two generators
of π1(B∗) vanish for flat equisingular connections. As we will see in the next section, this
fact will be reflected in the form of the affine group scheme associated to the category of
equivalence classes of flat equisingular connections (the differential Galois group), which
will only contain the part corresponding to the Ramis exponential torus and no contribution
from the monodromy. The correspondence ofProposition 5.2is independent of the choice
of the trivialising sectionσ of B.

5.2. The Riemann–Hilbert correspondence

So far we have been working with an assigned quantum field theoryT and the cor-
responding affine group schemeG = Difg(T ). We now pass to considering a universal
setting, which encompasses all theories. This is achieved by considering, instead of flat
equisingularG(C)-connections, the category of equivalence classes of allflat equisingular
bundles. For a specific physical theory, the corresponding category of equivalence classes
of flat equisingularG(C)-connections can be recovered from this more general setting by
considering the subcategory of those flat equisingular bundles that are finite dimensional
linear representations ofG∗ = G� Gm. This is analogous to what happens when one spe-
cializes motivic Galois groups to sucategories of motives, or differential Galois groups to
subcategories of differential systems. We describe now in detail the universal setting, with
the corresponding group of symmetries and the way it specializes to a given physical theory.

The category of equivalence classes of flat equisingular bundles has as objectsΘ =
(E,∇) pairs of a finite dimensionalZ-graded vector spaceE and an equisingular flatW-
connection∇. To define the latter, we consider the vector bundleẼ = B× Ewith the action
of Gm given by the grading and with the weight filtration defined byW−n(E) = ⊕m≥nEm.
A W-connection is a connection on the restriction ofẼ toB∗, which is compatible with the
weight filtration and induces the trivial connection on the associated graded. The connection
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∇ in the data above is a flatW-connection that satisfies the equisingular condition, that is, it
is Gm-invariant and the restrictions to sectionsσ of B with σ(0)= y0 are allW-equivalent
on B, where the equivalence relation is realized by an isomorphism of the vector bundles
overB, compatible with the filtration and identity on the associated graded, that conjugates
the connections. We consider the dataΘ = (E,∇) asW-equivalence classes.

As usual, it is a bit more delicate to define morphisms than objects. For a linear map
T : E→ E′, consider theW-connections∇j, j = 1,2, onẼ′ ⊕ Ẽ of the form:

∇1 =
(
∇′ 0

0 ∇

)
and ∇2 =

(
∇′ T ∇ − ∇′ T
0 ∇

)
, (5.10)

where∇2 is the conjugate of∇1 by the unipotent matrix

(
1 T

0 1

)
.

MorphismsT ∈ Hom(Θ,Θ′) in the category of equisingular flat bundles are linear maps
T : E→ E′ compatible with the grading and such that the connections∇j of (5.10)are
W-equivalent onB. The condition is independent of the choice of representatives for the
connections∇ and∇′.

The categoryE of equisingular flat bundles is a tensor category overk = C, with a fiber
functorω : E→ VectC given by:

ω : Θ = (E,∇) �→ E. (5.11)

In fact, one can refine the construction and work over the fieldk = Q, since the universal
singular frame (see(5.18) below), in which one expresses the connections, has rational
coefficients. In this case, the fiber functorω : EQ→ VectQ is of the formω = ⊕ωn, with

ωn(Θ) = Hom(Q(n),GrW−n(Θ)),

whereQ(n) denotes the object inEQ given by the class of the pair of the trivial bundle over
Bwith fiber a one-dimensionalQ-vector space placed in degreenand the trivial connection.

LetF(1,2,3, · · ·)• be the free graded Lie algebra generated by one elemente−n in each
degreen ∈ Z>0, and let

Hu = U(F(1,2,3, · · ·)•)∨ (5.12)

be the commutative Hopf algebra obtained by considering the graded dual of the enveloping
algebraU(F). We can then identify explicitly the affine group scheme associated to the
neutral Tannakian category of flat equisingular bundles as follows (cf.[18,19]).

Theorem 5.3. The categoryE of flat equisingular bundles is a neutral Tannakian category,
with fiber functor(5.11). It is equivalent to the categoryRepU∗ of finite dimensional linear
representations of the affine group schemeU∗ = U � Gm, where U is the pro-unipotent
affine group scheme associated to the Hopf algebraHu of (5.12).
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The affine group schemeU∗ is a motivic Galois group. In fact, by results of Goncharov and
Deligne ([24,30]; seeProposition 3.1above), we have the following identification of the
“cosmic Galois group”U∗.

Proposition 5.4. There is a(non-canonical) isomorphism:

U∗ ∼= GMT (O). (5.13)

of the affine group schemeU∗ with the motivic Galois groupGMT (O) of the schemeSN of
N-cyclotomic integers, for N = 3 or 4.

The fact that we only have a noncanonical identification suggests that there should be an
explicit identification dictated by the form of the iterated integrals that give the expansionals
defining the equisingular connections as inProposition 5.1. This should be related to Kont-
sevich’s formula for multiple zeta values as iterated integrals generalized by Goncharov to

multiple polylogarithms Lik1,...,km (z1, z2, . . . , zm), in terms of the expansionalTe
∫ 1

0
α(z)dz,

with the connection

α(z)dz =
∑

a∈µm∪{0}

dz

z− aea.

Notice, moreover, that the groupU∗, as the differential Galois group in the formal theory
of equisingular connections, corresponds to the Ramis exponential torus. In fact, we have
no contribution from the monodromy, a fact on which the proof ofProposition 5.2depends
essentially, and we also do not have Stokes phenomena, hence, as far as the differential
Galois group is concerned, we can equally work in the formal or in the non-formal setting.

5.3. The renormalization group as a Galois group

The formulation ofTheorem 5.3is universal with respect to physical theories. When
we consider a particular choice of a renormalizable theoryT, we restrict the category of
equisingular flat bundles to the full subcategory of finite dimensional linear representations
of G∗ = G� Gm, for G = Difg(T ). In this case, the Riemann–Hilbert correspondence
specializes to a morphism of differential Galois groups, as follows.

Proposition 5.5. Let G be a positively graded pro-unipotent affine group scheme. Then
there exists a canonical bijection between equivalence classes of flat equisingularG(C)-
connections and graded representationsρ : U → G, of the affine group scheme U in G.
Compatibility with the grading implies thatρ extends to a homomorphismρ∗ : U∗ → G∗,
which is the identity onGm.

This is a reformulation of the result ofProposition 5.2. In fact, more explicitly, the
representationρ of Proposition 5.5is obtained as follows. We can write an elementβ in
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LieG as an infinite formal sum:

β =
∞∑
1

βn, (5.14)

where, for eachn, βn is homogeneous of degreen for the grading, i.e.Y (βn) = nβn. Thus,
assigningβwith the action of the grading is the same as giving a collection of homogeneous
elementsβn, with no restriction besidesY (βn) = nβn. In particular, there is no condition
on their Lie brackets, hence assigning such data is equivalent to giving a homomorphism
from the affine group schemeU to G, by assigning, at the Lie algebra level, the generator
e−n to the componentβn of β.

In particular, the result above means that we can realize the renormalization group as a
Galois group. In fact, recall that, for an assigned theoryT, the correspondingβ that deter-
mines the countertermsγ−(z) is the infinitesimal generator of the renormalization group
(2.9). The representationρ : U∗ → G∗ then determines a lifting of the renormalization
grouprg to a canonical 1-parameter subgroup ofU∗, obtained by considering the element:

e =
∞∑
1

e−n, (5.15)

in the Lie algebra LieU. AsU is a pro-unipotent affine group scheme,edefines a morphism
of affine group schemes:

rg : Ga→ U, (5.16)

from the additive groupGa to U.
Thus, the rest of the affine group schemeU can be thought of as further symmetries that

refine the action of the renormalization group on a given physical theory. More precisely,
restricting the attention to a generatore−n of the Lie algebra ofU corresponds to considering
the flow generated by the degreen component of theβ function with respect to the grading
by loop number. Thus, from a physical point of view the Galois groupU accounts for a
decomposition of the action of the renormalization group in terms of a family of flows
restricted to then-loops theory.

5.4. Universal singular frame

The elemente ∈ LieU defined in(5.15)determines a “universal singular frame” given
by:

γU (z, v) = Te−
1
z

∫ v
0
uY (e) du

u ∈ U. (5.17)

This is obtained by applyingProposition 5.2to the affine group schemeU. This can be
expressed explicitly in terms of iterated integrals in the form:

γU (z, v) =
∑
n≥0

∑
kj>0

e−k1e−k2 · · · e−kn
k1 (k1+ k2) · · · (k1+ k2+ · · · + kn)v

∑
kj z−n, (5.18)

with e−n the generators of LieU. This expansion has rational coefficients. The coefficients
are the same as those occurring in in the local index formula of Connes–Moscovici[20],
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where the renormalization group idea is used in the case of higher poles in the dimension
spectrum.

The Birkhoff factorization inU, applied to the universal singular frame, yields universal
counterterms that maps under the representationρ : U → Difg(T ) to the counterterms of
a specific theoryT.

6. Renormalization and geometry

Quantum mechanics allows for two equivalent formulations of physics at the macroscopic
scale, based on coordinate and momentum space, dual to one another by Fourier transform,
while gravity, relativistically formulated in terms of the geometry of space-time, appears to
privilege coordinates over momenta.

In the quantum theory of fields, at the perturbative level, Feynman integrals are computed
in momentum space, using the dimensional regularization scheme. A nice historical and
motivational perspective on how this came to be the general “accepted paradigm” in the
context of renormalizable perturbation theory can be found in Veltman’s paper[60]. As
Veltman suggests, one can assume perturbative field theory as the starting point, defined
in terms of Feynman diagrams using dimensional regularization (he refers to this as the
“dimensional formulation”). This is very much the approach followed by the Connes–
Kreimer theory and by our present work, where such physical data, taken as the given
starting point, are reformulated in a more satisfactory conceptual perspective.

It is also possible to follow a different approach and to consider the problem of per-
turbative renormalization in coordinate space, working geometrically in terms of Fulton–
MacPherson compactifications. A mathematical theory of perturbative renormalization un-
der this point of view was developed recently by Kontsevich[41]. It has the advantage of
introducing directly geometric objects like algebraic varieties, hence a natural setting for
an explicit action of motivic Galois symmetries (cf. also[40]).

As stressed by Veltman[60], space and time do not occur at all in the dimensional
formulation, as coordinate space exists solely as Fourier transform of momentum space,
which ceases to be defined when momentum space is continued to complex dimension.
Notions associated to coordinate space, such as length and time measurements, must be
recovered through the gravitational field, with graviton-fermion interactions determined
by gauge invariance and Ward identities. Thus, a viewpoint that favors momentum rather
than coordinate space is necessarily closer to noncommutative geometry than to classical
algebraic geometry. In noncommutative geometry the metric properties of space are assigned
not by a local coordinates description of the metric tensor, but through a “dual viewpoint”,
spectrally, in terms of the Dirac operator, hence they continue to make sense on spaces that
no longer exist classically. This appears to be a promising approach to reconcile space (no
longer defined classically) with the dimensional formulation.

It is important to stress, in this respect, that the formulation of Riemannian spin geometry
in the setting of noncommutative geometry, in fact, has already built in the possibility of
considering a geometric space at dimensions that are complex numbers rather than integers.
This is seen through the dimension spectrum, which is the set of points in the complex
plane at which a space manifests itself with a nontrivial geometry. There are examples



A. Connes, M. Marcolli / Journal of Geometry and Physics 56 (2006) 55–85 83

where the dimension spectrum contains points off the real lines (e.g. the case of Cantor
sets), but here one is rather looking for something like a deformation of the geometry in a
small neighborhood of a point of the dimension spectrum, which would reflect dimensional
regularization. The possibility of recasting the dimensional formulation in the setting of
noncommutative geometry may prove very useful in the problem of extending at a fully
quantum level the geometric interpretation of the standard model of elementary particle
physics provided by noncommutative geometry ([14], [10]).

An important related question, which may be a starting point for such broader program,
is to understand the precise relation between the universal singular frame and the local index
formula, which in turn may cast some new light on the issue of the relation of the theory
of perturbative renormalization illustrated here and noncommutative geometry. Since the
local index formula of Connes–Moscovici is closely related to chiral anomalies, a direct
comparison with the local index formula will involve a well known problem associated to
dimensional regularization in the chiral case, namely the technical issue of how to extend
the definition of the product:

γ5 = iγ0γ1γ2γ3, (6.1)

of theγ matrices, which integer dimensionD = 4 satisfies the Clifford relations{γµ, γν} =
2gµν I, with Tr(I) = 4, and anticommutativity{γ5, γ

µ} = 0. Theγ5 problem, however, is
not considered a serious obstacle to the application of dimensional regularization, as there
are good methods to address it (cf.[49] for a recent discussion of this issue). For instance,
the γ5 problem is addressed by the Breitenlohner–Maison approach, in which one does
not give an explicit expression for the gamma matrices in complex dimension, but just
defines them (and theγ5 given by(6.1)) through their formal properties. In[43], Kreimer
described another approach to the problem, in whichγ5 still anticommutes withγµ but
the trace is no longer cyclic, an approach that is expected to be equivalent to the one of
Breitenlohner–Maison (cf.[43], Section 5).

Finally, we would like to end on a more speculative tone, by mentioning a very different
source for the idea of the existence of a deformation of geometry to non-integral complex
dimensions. In arithmetic geometry, the Beilinson conjectures relate the values of the first
non-vanishing derivative at integer points of the motivicL-functions of algebraic varieties to
periods, namely numbers obtained by integration of algebraic differential forms on algebraic
varieties (cf. e.g.[42]). This process of considering the expansion in a neighborhood of an
integer point is reminiscent of the procedure of Dim-Reg, where one considers the Feynman
integrals in an infinitesimal neighborhood of the integer dimensionD. Based on this analogy,
it becomes extremely suggestive to imagine that the Beilinson conjectures may be related
to a “dimensional regularization of algebraic varieties and periods”, and that there may
be a geometric interpretation even for the values at non-integer points, in terms of some
(noncommutative) geometry in complex dimension.
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